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. A Comparison of Lineaf Least Squares Computer Programs .

Two linear least squares test problems, both fifth degree polyno-
mials, have been run on more than twenty different computer programs -
in order to assess their numerical accuracy. Essentially five different
algorithms were used in the various programs to obtain the coefficients
of the least squares fits. The tests were run on several different
computers, in double precision as well as single precision. By
comparing the coefficients reported, it was found that those programs
using orthogonal Householder transformations or Gram-Schmidt orthonormal-
ization were much more accurate than those using elimination algorithms. -
Programs using orthogonal polynomials (suitable only for polynomial fits)
also proved to be superior to those using elimination algorithms. One
program, using congruential methods and integer arithmetic, obtained
exact solutions. In a number of programs, the coefficients reported in
one test program were sometimes completely erroneous, containing not
even one correct significant digit.

Introduction:

Computational algorithms for linéar least squares problems were
originally designed for calculators. However, many computer solutions
of the linear least squares problems aré still obtained from programs
using calculator algorithﬁs. The numerical accuracy of these solutions

is in many cases a tragedy.

The present study was undertaken to assess the numerical accuracy
of the RAX Statistical System program polynomial regression and other
representative least squares programs from a variety of sources. Many

of the results summarized herein are taken from a study by Wampler. [44]
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Two test problems, both £ifth degree polynomials, have been run

“on more than twenty different programs. Included in the study were

programs from the BMD Biomedical computer programs collection, the
C-E-I-R Multi-Access Computing Services Libfary, the IBM SHARE Library,'
the IBM Syétem/360 scientific subroutine package, the Univac MATH-PACK

~and STAT-PACK collections, and the Project MAC-7094 disk files. A

detailed listing of the sources of the programs is given in Appendix A,
together with a brief description of each program.
The programs included in this study used essentially five different

algorithms: orthogonal Householder transformations, Gram-Schmidt -

~orthonormalization, orthogonal polynomials; Gaussion or Jordan-

elimination, and a congruential method with computations in integer

arithmetic,
Previous studies appraising linear least squares prpgram and

qamparing the results of different algorithms have been made by

Cameron [9], Freund [20], B:ighf and Déwkins [7], Zellner and Thornber [48],

Longley [29], Jordan [27], and Wampler [44].

The linear least squares problem ﬁay be briefly stated as follows:
One has n observations or measurements of a ''dependent" variable y
which are statisﬁically independent with Eommon variance €2 whose

expected values are given by a linear function of the corresponding
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values of k "independent' variables, X;, Xz, «ecuey Xk, 'k < n.' in
matrix notation the n observations have expected values E Y) = Xa,
whe'réY is an n x 1 vector, X is an n x k matrix, and g is a k x 1
vector of unknown coefficients. Assuming that X is of rank k, the |
least squares estimates of the coefficients are given by g = xx)-1 X'Y.
Other quantities of interest are Y = X 8, the vector of predicted

values; § = Y - Y, the vector of residuals; and
2 = 1 - -y

an estimate of the variance o2.

The Test Problems:

The two main test problems which were used throughout this inves-
tigation are identified as Y, and Y,. Both were fifth degree polynomials,
with the values of x being the integers 0, 1, 2, ...., 20. The 'obser-

vations', Y; and Y,, were calculated from the following equations:

Y;: y=1+x+x?+x3+xhexd,x=0(01)20).

Y,: y=1+0.1x +0.01 x2+ 0,001 x>+ 0,0001 x* + 0.00001 x°, x = 0(1)20.

Thus the values of Y; were integers having ene to seven digits, and
those of Y, were five decimal mmbers ranging from 1.00000 to 63.00000.
If the least squares solutions were computed with no rounding

error, one would obtain:
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1 | 1.
1 R 0.1
B (Y1) = 1 ’ g (¥2) = .01
1 .001
1 .0001
1J _ .00001

and-for both problems the residual standard deviation would be zero.

The two test problems, Y, and Y,, were chosen because they are
highly ill-conditioned. That is, some programs fail to obtain correct
solutions while other programs succeed in obtaining reasonably accurate
solutibns. Polynomial problems were chosen because polynomial fitting
is an i.mpbrtant type of linear least squares problem which occurs
frequently in practice. |

The P-condition defined as:
P =1,
B

where A is the numerically largest eigenvalue of A and » is the

numerically smallest eigenvalue of A, is the criteria which we shall

use to measure the condition of matrix A. (See Newman [34, p. 240]).
Most of the programs‘which were tested obtained more accurate

solutions for Y, than for Yi1. If we let A denote the 7 x 7 matrix.

X'x | X'y
Y' X 00
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We find that for Y,, P(A) = 4.005 x 10'3, whereas for Y;, ©(A) = 6.829 x 1013,
indicating that the system involving Y; is more ill-conditioned than
that involving Y,.

Summary of the Results:
| Tables 1 to 6 present a brief summary of the main results. A count,

Cj» of the mumber of correct significant digits in each computed cbefficient | ‘

was obtained as follows:

Let Bj G=1, 2, «ev.., b) denote the "true'" value of the
coefficient - that is, the value computed with no rounding error. Let
B‘j denote the value calculated by the computei'. Then

(-1og1°|51_;_j§l|,if|3j-§j|;‘Oandej ¥ 0

¢ -

- log)o |85 - 8j] » if |8j - Bj | A Oand gy # 0

D, the approximate mmber of decimal digits with which the

\_-machine computes, if B; « B: =0,

J J

The above approach to counting the mumber of correct digits in a
computed value has been used by Jordan [27] and others.

Tables 1 to 6, in the columns headed "'Average Number of Correct
Digits' report o 6
b

C=1/6
/ 5 3
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Fach of the tables (1 through 6) summarizes a set of results fpr
aEparticular machine precision - 8, 9, 16, 18, etc., digits.,ﬂWifhin
.each tabie the various programs are ranked for each of the -two tegt
problems, with rank 1 denoting the best performance according to the
count C.- | , |

The symbols in the Algorithm column of the tables denote the
following:

C - Congfuential method, interger arithmetic

E - Elimination method
GS - Gran-Schmidt orthonormalization
HT - Orthogonal Householder transformations
"~ OP - Orthogonal polynamials .

We shall include a discussion of only those programs currently
available in SRS and the proposed program by Lautenschlager.1 For a
detailed discussion of the algorithms employed by the other programs

summarized in this report see Wampler [44].

1 Lautenschlager is a mathematical statistician with the United
States Department of Agriculture, Statistical Reporting Service,
Washington, D. C.
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. Programs Using Orthogonal Polynomials:

Since the two test problems are both polynomial fits, we were

able to test programs in which thé algorithm used orthogonal polynomials;

This method, described by Forsythe [18], is attractive because it

generally requires many fewer operations than other methods.

S100PR by Lautenschlager employs orthogonal polynomials and uses

a modification of Forsythe's method [18].

From Table 3 we see that

the double precision version in 16 digits of S100PR performed best on

test problem Y1, however, ranked last of the three programs on test

problém Y2.

Below are listed the actual coefficients and counts obtained for

S100PR.

- DOUBLE PRECISION
BETA-HAT (Y1)
©0.9999998617649907

1.0000002746473910

0.9999999016054061

1.0000000128933947

0.9999999992947720

1.0000000000136755

AVERAGE =

(16 DIGITS)
COUNT
6.859
6.561
7.007
7.889
9.152

10.864

8.055
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" DOUBLE PRECISION (16 DIGITS)

BETA-HAT (Y2) | COUNT
1.0000006249634456 6,204
0.0999986609550127 4.873
0.0100004345935624 4,362
0.0009999576813923 4,374

©0.0001000011332467 4.946
0.0000100000037365 6.427

AVERAGE = 5,198

Programs Using Elimination Algorithms:

The majority of the programs tested in this investigation used some
. form df an elimination algorithm. Although this was the most popular
mefhod,.it was the least successful. None of these programs performed
as well as those using Householders' transformations, Gfam-Schmidt
orthnormalization (with iteration), or orthogonal polynomials.

Within this class of programs, there were several variations in the
method of obtaining the least-squares coefficients.

The programs POLRG and DFQ02 are the polynomial regression programs
of the IBM System/360 Scientific Subroutine Package [24, 25] and modified
SSP for RAX [24, 25, 38], respectively. These programs call for subroutines,
GDATA, ORDER, MINV, AND MULTR, in the course of obtaining the least squares
coefficients and other quantities of interest. These subroutines perform

the following operations:
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(1) GDATA generates the powers of the independent variable, finds

- . means and standard deviations, and sets up a correlation matrix.

(2) ORDER chooses a dependent variable and a subset of independent
variables from a larger set of variables.
(3) MIWV inverts the correlation matrix using the "Standard Gauss-
Jordan method."
(4) MULTR computes the regression coefficients and related quantities,
such as the sum of squares attributable to the regression and the sum of
squares of deviations from regression.

We see from Table 1 that the single precision version of POLRG

obtained rather low scores and the RAX modification DFQ02 was almost the worst

of those programs included on both test problems. A double precision version

of POLRG was also run, and the performance here as reported in Table 4 was

- comparable to other programs using similar elimination algorithms.

“The user of POLRG or DFQ02 specifies m, the highest degree polynomial
to be fitted, and the program automatically reports the results of fitting
polynomials of Successively increasing degrees, starting with the first
degree. If there is no reduction in the residual sum of squares between
two successive degrees of polynomials, the program stops the problem before
completing the analysis for the highesf degree specified. In running both
programs, POLRG and DFQ02, on both test problems, Y1 and Y2, in single
precision the analysis stopped after degree four, and in lieu of a fifth
degree polynomial fit, the message "NO IMPROVEMENT" was printed. In order
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to complete the calculations for the fifth degree, the checks on 'improvement"

‘were bypassed. In the double precision versioh, fifth degree results were

obtained without any such alterations in PCLRG, DFQ02 was riot run in double
precision, ' A

The Programmer's Manual for the IBM System/360 Scientific Subroufine
Package [25] contains some warnings regarding the accuracy of computations.
The reader is informed that the accuracy of the computations in many of the
routines is highly dependent upon the number of significant digits available
for arithmetic operations, It is pointed out that matrix inversion and many
of the statistical subroutines fall into this categoi'y, and that the user may,
therefore, wish to use double precision versions of these routines. (The
programs are so constructed that conversion to double precision is an easy
matter.) An appendix of the manual classifies the subroutines of this
package into three categories. They are: (1) subroutines having little
or no effect on accuracy, (2) subroutines whose accuracy is dependent on
the characteristics of the input data, and (AS)\ subroutines in which definite
statements on accuracy can be made. Only one of the four subroutines called
by the POLRG program, namely ORDER, is in the first category. The other
three subroutines, GDATA, MINV, and MULTR, fall in the second category. In
connection with this second category we read that "it cannot be assumed
that the results are accurate simply because execution is completed."

A more explicit statement is given in connection with the subroutine
GDATA. Here there is a comment in the program stating that if in, the
highest degree polynomial to be fitted, is equal to 5 or greater, single

precision may not be sufficient to give satisfactory results. Since the
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manual's test problem for POLRG specifies m = 4 and has 15 data points,

one might infer that satisfactory results would be obtained for this problem.
This is not the case, however, In thq solution to this problem given on -
page 410 of the manmal, the intercept term for the polynomial regression

of degree 4 is reported to be -5.26735. An accurate calculation shows that
this term is actually -6.04262, so that the reported term had no correct
signifi-éant digits. The four reported regression coefficients were

correctly computed to only one or two digits. Furthermore, the sum of
squares of deviations from the regression is reported to be 128.85156, whereas it
is actually 17.67310. This error is also propagated into the calculation

of the mean square, the F value, and the MmMnt in terms of sums of
squarés.

Concluding this discussion of the accuracy of the test problem
accompanying the program POLRG, we note a remark given in the Programmer's
Manual under 'Purposes and Objectives of the Packages'" 'While this package
may provide many of the tools necessary to solve the more commonly encountered
problems in engineering and science, there is no intent to imply that these
subroutines represent the current state of the art in statistics or numerical
analysis."

Below we 1list the coefficients and counts obtained for POLRG and DFQ02.
Similar results for the remaining programs listed in Tables 1-6 may be fbund in
Wampler [44].
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POLRG DOUBLE PRECISION (18 DIGITS)
BETA-HAT .(Y1) COUNT
1.00000011110114428 6.954
9;999999996457514712- ~ 8.020

1.00000000321449412 8.493 .
0.999999999544922239 9.342
1.00000000002322160 10.634
0.999999999999491835 | 12,294

AVERAGE = 9,290

BETA-HAT (Y2) COUNT
1.00000000000136645 © 11.864
0. 0999999999999411990 12,231
0.0100000000000305940 11.514
0.000999999999995547370 11.351
0.000100000000000227181 11.644
0. 00000999999999999416480 . 12,234

AVERAGE = 11.806




DFQ02
BETA-HAT (Y1)
374.3750

-769. 9102
285, 2087
-37.12183

3.125595
0.9581172

BETA-HAT (Y2)
0.9922342
0.1436781

-0.0070678
0.0032501

-0.000121566
0.00001231

-13-

SINGLE PRECISION

(8 DIGITS)

COUNT
-3.428
-3.113
-3.546
~2.419
-1.672

1.378

AVERAGE = -2,133

AVERAGE = 1,406

COUNT
2.110
. 0.360
1.768
1.648
1.915
0.636
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ConclgdiggﬁRemarks:

(1) Of the four procedures using floating-;point arithmetic which were
included in this sfudy, orthogonal Householder transformations and Gram-

Schmidt -orthonormalization proved to be the best, Orthogonal polynomials

- ranked next., Elimination methods were the least successful, but the most

popular} The multiple precision integer arithmetic procedure using
congruential methods was unique in obtaining exact solutions.

(2) Some other algorithms apparently of high quality which have been
published in the last few years were not included in this study. These
in¢1ude: (a) Bauer [2], |

(b) Bjorck and Golub [6],
'(c) Bjorck [5].
(3) The importance'of accumulating inmer products in double precision

cannot be overstressed. A number of recent papers on least squares

computations have emphasized this point. These include Businger and Golub [9],

Bauer [2], Golub and Wilkinson [22], Bjorck and Golub [6], and Bjorck [5].

(4) Iterative refinement is another valuable feature of recent
algorithms,

(5) In any mathematical calculation carried out on a computer, it is
desirable to know whether an accurate solution has been obtained or whether
the result of a calculation is contaminated by rounding error to such‘an
extent that it is worthless. This goal has been achieved in some areas.

Martin, Peters, and Wilkinson [31], in their paper giving an algorithm

for solving Ax = b, where A is n x n positive definite matrix and b is
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an n X p matrix, state that their procedure "either produces the correctly
rpunded solutions of the equation Ax = b 6r indicates that A is too
ill-conditioneﬁ.for this to be achieved without working to higher
precision (or is possibly singular).h Similarly, Wilkinsd£'s program [45]

for the solution of an ill-conditioned system of equations Ax = b, where

"A is n x n, "gives either a solution of the system which is correct to

working accuracy or alternatively indicates that the system is too

~ill-conditioned to be solved without working to higher precision and may

even be singular."

It appears that the goal settout above has now been achieved in the
linear least squares program'of Bjorck and Golub [6]. The'authors state
that their procedure may be used to compute accuraté solutions and residuals
to linear least squares problems, but that the procedure will fail when
X modified by rounding errors has less than full rank, and that it will
also fail if X is so ill-conditioned that there is no perceptible
improvement in the iterative refinement. The user is easily informed of
these situations.

(6) SRS users of DFQO2 should be cognizant of the restrictions outlined
in the Programmer's Manual for the IBM System/360 Scientific Subroutine
Package modified for RAX regarding the accuracy of computations. Whenever
working with a problem similar to either of the test problems, Yl or YZ,
POLRG (available in the Center), or S100PR give more accurate solutions, than DFQOZ.

S100PR is now stored on the SRS Remote Access Terminal.
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Table 1.--Summary of programs run in single precision--8 digits

H : Average number of : Rank
: : : correct digits :
Program : Com- : Algo- : .
' ! puter: rithm a: : : :
: : ' Yl I ¢/ Yl Y2
ALSQ , : 1108  HT 4.098 5.368 3 5
BMDO2R : 1108 E -0.106 1.981 12 14
BMDO3R ‘ : 7094 E 0.742 1.721 8 16
BMDO3R : 1108 E -0.123 2,287 13 12
DAM : 7094 E 1,389 2,312 7 11
DAM : 1108 E -0.264 2.622 16 9
DFQO02 : : 360 E -2.133 1.406 21 18
LINFIT (Miller) - 7094 ? -2.756 -0.301 22 22
- LSTSQ : 1108  HT 4,528 5.840 1 3
MATH-PACK, ORTHLS : 1108 oP 2.118 4,363 6 6
MPR3 2 7094 E -0.140 1.856 14 15
OMNITAB (Invert) : 7094 E -0.607 1.460 17 19
OMNITAB (Invert) : 1108 E -0.907 1.224 19 20
OMNITAB (Ortho% : 7094 GS 3.954 5.968 4 2
OMNITAB (Ortho : 1108 GS 4.137 5.464 2 4
ORTHO (no iteration) : 1108 GS -1.976 0.419 20 21
ORTHOL : 1108 GS 3.593 6.197 5 1
POLRG : 1108 E -0.191 2.280 15 13
SPWTX ' : 1108 E -0.658 1.527 18, 17
STAT-PACK, GLH | : 1108 E 0.06 2767 10y ]
STAT-PACK, REBSOM : 1108 E 0.066 2.767 1 7z
STAT-PACK, RESTEM : LLO8 E 0.651 2.407 9 10
E

WRAP : 7094 -5.300 ~ -2.871 23 23

2 B = Elimination method; GS = Gram-Schmidt orthonormalization;
HT = Orthogonal Householder transformations; OP = Orthogonal
polynomials.
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Table 2.--Summary of programs run in single precision--9 digits

Average number of Rank -
: : '+ correct digits
Program : Com- : Algo- t

: puter : vrithm 2 : :

: N rooYl A ¥4 T € S ¢
LINFIT . 235 B 0.905 © . 2.894 5 6
LSCF ' : 235 E 0.308 2,483 7 7
LSFITW : 235 GS 4,102 6.354 1 1
POLFIT : 235 oP 3.349 5.922 2 2
SIMEX : 235 E 1.402 3,213 3 3
STAT20 : 235 E 0.612 2.920 6 5
STAT21 . : 235 E 1.169 3.183 4 4
2 B = Elimination method; GS = Gram-Schmidt orthonormalization;

OP = Orthogonal polynomials.

Table 3.--Summary of programs run in double precision--16 digits

: T ¢ Average number of - Rank

Program ¢ Com- : Algo- : correct digits

: puter : rithm @ ‘

: : YL oYz :ovlo:oyz
EMDOSR : 7004 B 6.953 6. 230 3 2
DPVMTX ¢ 1107 E - 7.882 9.959 2 1

1 3

S100PR : 360 10) 2 8.055 5.198

4 B = Elimination method; OP = Orthogonal polynomials.
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Table 4.--Summary of programs run in double precision--18 digits

. Average number of : Rank

: -l : ¢ correct digits
Program : Com- : Algo- : :
\ : puter : rithm @ T : :
: : : Y1l Y2 Yl Y2
ALSQ ' : 1108 HT 12,667 . 15,322 4 4
BMDO2R : 1108 E 9.645 12.865 7 7
BMDOSR ’ : 1108 E 9,368 11.791 9 10
DPWMTX : 1108 E 9.744 13.484 6 6
LSTSQ : 1108 HT 14.643 16.293 1 1
" MATH-PACK, ORTHLS : 1108 op 12.098 14,461 5 5
ORTHO . : 1108 "GS 13,188 15.514 3 3
ORTHO(no iteration): 1108 GS 7.963 10.354 11 11
ORTHOL ¢ 1108 GS 13.212 15.604 2 2
POLRG . : 1108 E 9.290 11.806 10 9
STAT-PACK, RESTEM : 1108 E 9.494 12,019 8 8

a | = Elimination method; GS = Gram-Schmidt orthonormalization;
HT = Orthogonal Householder transformations; OP = Orthogonal
polynomials. '

Table 5.--Summary of programs run in single prec151on (8 digits) with inner
products accumulated in double precision (18 digits)

: Average number of : Rank
: correct digits :

¢ o0 28 o0 ov o

- Program : Com- AlgO" . : '
: puter rithm 2 : e :
: : Yl : Y2 D S ¢
ALSQ 1108 HT 3.506 6.530 3 1
LSTSQ 1108 HT 8.000 6.279 1 3
ORTHO 1108 GS 3.904 6.459 2 2

& GS = Gram-Schmidt orthonormalization; HT = Orthogonal Householder
transformations.
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Table 6.--Summary of program run in multiple precision integer arithmetic -

* . .
. . .

Average number of

, , P : : : correct digits
Program : Com- : Algo . : :
: puter : rithm : ‘ : :
e : : D ¢ | Y2
SOLVER : 1108 G Rational form =~ 18,000 17.347
, : Floated form

.
.

& ¢ = Congruential method.
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Appendix A. Sources of the Programs, With
Brief Descriptions.
ALSQ. " A FORTRAN IV subroutine to solve the linear least squares problem,
written by G. W. Stewart III, Union Carbide Corp. , Oak Ridge, Tennessee
(preseni;_ address: The University of Texas, Austin, Texas). This program

- uses a modification of the Iiusinger-Golub algoritim [8].

BMDO2R, Stepwise Regression. Ome of the Biomedical Computer. Programs, written
in FORTRAN [15].

BMDO3R, Multiple Regression with Case Combinations. One of the Biomedical
Computer Programs, written in FORTRAN [15].

BEMDOSR, Polynomial Regression. One of the Biomedical Computer Programs,
written in FORTRAN [15]. |

DAM. A general purpose computer program for data processing and multiple
regi‘essidn, written in FORTRAN by Rudolf R, Rhomberg, Lorette Boissonneault,
and Leonard Harris, International Monetary Fund [36]. . '

DFQO02, Pblynomial Regression. One of the programs of the IEM System/360
Scientific Subroutine Package written in FORTRAN II modified for Remote
Access Statistical System (RAX) [24, 25, 38].

DPVMIX. A double precision FORTRAN IV program for inverting a matrix or
solving a set of linear equations. To a program from the SHARE library
(7090-F1 3181INV2 Double Precision Matrix Inversion with Selective Pivot,
written by A. R. Sadaka [26]), Sally T. Peavy, National Bureau of Standards,
incorporated accuracy checks.
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LINFIT. A program which fits a 1inear.function to collected data via
least sqﬁares. Optional constraints may be applied to the fitting
coefficients to make them.nonnegative, add to a constant, etc. One of
eighfeen statistical routines written by James R. Miller [32]. This.

library of routines exists in the Project .

LINFIT#**, A program written in BASIC for linear least squares curve fitting
and computing correlations. Origin: Dartmouth College, Hanover, N.H.

Available in the C-E-I-R Multi-Access Computer Services library [10].

LSCF--**%, A least squares polynomial curve fitting subroutine written in
BASIC. Origin: Dartmouth College, Hanover, N.H. Available in the C-E-I-R

Multi-Access Computer Services library [10].

LSFITW**#*, A least squares curve fitting program written in BASIC. Adapted
by John B. Shumaker, National Bureau of Standards, from Philip J. Walsh's
ORTHO algorithm [42]. Available in the C-E-I-R Multi-Access Computer Services
library [10].

LSTSQ. A FORTRAN IV subroutine which solves for X the overdetermined system
AX = B of m linear equations in n unknows for'p right-hand sides. Written
by Peter‘Businger, Computation Center, University of Texas (present address:
Bell Telephone Laboratories, Murrary Hill, N.J.), using the Businger;Golub
algorithm [8].

MATH-PACK, ORTHLS, Orthogonal Polynomial Least-Squares Curve Fitting. One of
the Univac 1108 MATH-PACK programs, written in FORTRAN V [40].
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MPR3, Stepwise Multiple Regression with Variable Transformations.

A FORTRAN II program written by M. A. Efroymson, Esso Research and Engineering
‘éo.; Madison, N.J., uéihglthe Efroymson algorithm [16]. Available in the
SHARE library: 7090-GZ 3145MPR3[26]. |

OMNITAB, a general-purpose computer program for statistical and hﬁmerical
analysis. Developed at the National Bureéu oflStandards by Joseph Hilsenrath
et al. [23]. Now available in an A.S.A. FORTRAN version, OMNITAB allows the
user to commumicate with a computer in an efficient manner by means of

simple English sentences.

ORTHO. A program written by Philip J. Walsh, National Bureau of Standards
(present address: University Computing Co., East Brunswick, N.J.), which uses
a Gram-Schmidt orthonormalization process for least squares curve fitting.
ORTHO exists as an ALGOL procedure [42], a FORTRAN program, a BASIC program
(see LSFITW*** on page 21), and as a routine of OMNITAB [23], where it is

called by the commands FIT and POLYFIT.

ORTHOL. A modification of the Davis-Rabinowitz orthonormalization algorithm
[12, 13, 14], written in FORTRAN II by James W. Longley, Bureau of Labor
Statistics, Washington, D. C., and Roger A. Blau, Bureau of Labor Statistics

and Carnegie-Mellon University, Pittsburgh, Pa. [30].

POLFIT. An anonymous program written in BASIC for least squares polynomial

curve fitting using orthogonal polynomials.
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POLRG, Polynomial Regression. One of the programs of the IBM System/360
Scientific Subroutine Package written in FORTRAN IV [24, 25].

-

S100PR. A program written by Lyle Lautenschlager, Statistical Reporting
Service, which uses an orfhogonal polynomial épproximation methbd, written

in FORTRAN II.

SIMEX-#*#%%_, A program written in BASIC for solving n simultaneous equations
in n unknowns. Origin: Naval Ordinance Laboratory, Silver Spring, Md.

Available in the C-E-I-R Multi-Access Computer Services library [10].‘

SOLVER. A FORTRAN program written by Morris Newman, National Bureau of
Standards, for obtaining the exact solution of the system AX = B, or the
inverse of a matrix A, by congruential methods [35]}. The elements of

A and B nust be integers.

SPWIX. A single precision FORTRAN IV program for inverting a matrix or
solving a set of linear equations. To a program from the SHARE library
(7090-F1 3180INV1 Single Precision Matrix Inversion with Selective Pivoting
written by A, R, Sadaka [25], Sally T. Peavy, National Bureau of Standards,

incorporated accuracy checks.

STAT-PACK, GLH, General Linear Hypotheses. One of the Univac 1108 STAT-PACK
programs, written in FORTRAN V [42].

STAT-PACK, REBSQM, Back Solution Multiple Regression. One of the Univac 1108
STAT-PACK programs, written in FORTRAN V [42].

STAT-PACK, RESTEM, Stepwise Multiple Regression. One of the Univac 1108 STAT-
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PACK programs, written in FORTRAN V [42].

STAT 20%%%, A program written in BASIC for stepwise multiple linear regression.
Written by Thomas E. Kurtz, Dartmouth College, Hanover, N.H. Available in
the C-E-I-R Multi-Access Computer Services 'library [10].

?

STAT21%%%, A program written in BASIC for multiple linear regression with
detailed output. Written by Gerald Childs, Dartmouth College, N.H.
Available in the C-E-I-R Multi-Access Computer Services library [10].

WRAP, Weighted Regression Analysis Program. A FORTRAN II program written by
M. D. Fimple, Sandia Corp., Albuquerque, New Mexico. Available in the
- SHARE library: 7090-G2 3231 WRAP [26].
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